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Abstract 

It is known that the divergence of vacuum energy density (VED) in Quantum Field Theory lies at the core 

of the cosmological constant (CC) problem. Our brief note suggests that, at least in principle, modeling the 

quantum vacuum as an ensemble of fractional oscillators may regulate the ultraviolet behavior of the VED 

and evade the CC problem.       
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1. VED and the cosmological constant problem 

The traditional computation of VED in Quantum Field Theory starts from the sum [1] 
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Here, VED is modeled as a reservoir of free quantum harmonic oscillators in flat 

spacetime and (1a) represents the integral of the zero-point energy carried over all 

momenta. For large momenta nk m , the oscillator frequency may be approximated as 

( )n k k  , in which case the integral (1) diverges. Inserting an ultraviolet (UV) cutoff   

in (1a) yields  
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It is apparent that (2) is quartically divergent as the UV cutoff approaches the Planck 

region of scales ( ( )Pl nO M m   ). To regularize (2), we follow the general 

renormalization prescription of Quantum Field Theory, according to which one starts 

with a bare Lagrangian and a cutoff dependent bare VED in the form 

 ( )b b    (3) 

As a result, the renormalized or effective VED is given by  

 4

,v ( )eff b c      (4) 

where c  stands for some numerical constant. Astrophysical observations from type I 

supernovae and from the cosmic microwave background (CMB) radiation show that  
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Since experiments have confirmed that the Standard Model is valid at least up to an 

energy scale of  12(1TeV 10 eV)O  , one may reasonably assume that the UV cutoff can be 

placed around this scale ( 12(10 eV)O  ). Combined use of (4) and (5) gives 

 3 4 12 4(2 10 eV) ( ) (10 eV)b c     (6) 

It follows that the bare value of the cosmological constant evaluated at the cutoff must be 

chosen so that it cancels out a contribution on the order of 48 410 eV  and leaves a 

contribution on the order of 12 410 eV . This requires an unnatural fine-tuning of the 

cosmological constant on the order of 60 decimal places, which lies at the core of the 

cosmological constant problem. 

2. Regularization of the VED integral through fractional dynamics  

We now conjecture that quantum vacuum may be approximated as an array of non-

relativistic oscillators with long-range interaction. The dynamics of the array is encoded 

in the following Hamiltonian [2] 
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Here,   stands for the oscillator index ( 0,1,2,...  ), 0g  is a coupling constant, (...)V the 

interaction potential and n m  the spatial separation of oscillators located at nodes n  

and m . According to [2], the equation of motion derived from (7) and applied to the 

continuous field limit of the array, is given by 
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in which 
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and 
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Here, D x


    denotes the fractional derivative operator and (...) the Riemann 

zeta-function. A cursory glance at (8) reveals that, 

 a) the second term in the right-hand side acts as a “pseudo-force” induced by 

fractional dynamics, 

 b) this force vanishes away when   takes on a range of integer values ( 0,1,2,...  ).  

Furthermore, integrating (9) over the field domain generates an additional energy term 

in the original Hamiltonian, i.e. 

 0 0( , ) [ , , ( , )]E g g x t d       (11) 

An attractive property of (11) is that, at least in principle, (11) may offset the quartic 

divergence of the VED integral shown in (2).  
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One arrives at a similar conclusion starting from [3], where the long-range dynamics of 

nonlinear oscillators is also analyzed in terms of fractional derivatives. In this case, the 

natural generalization of the dispersion law (1b) may be presented as 
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whose low-mass approximation reads 
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Following the underlying principles of fractional dynamics, we now assume that both 

coefficient b  and wavenumber k   depend on the dimensionless observation scale 

according to  

 b ~ b  (14a) 

 k  ~ k  (14b) 

By (14), (13) reduces to the power law 

 ( )       (15) 

where 
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Replacing (15)-(16) in (1a) leads to the conclusion that, for any given index  , (1a) stays 

convergent under a suitable choice of exponents b  and  k .  
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